Matches in Nanopublications for { ?s ?p " Targeting mTOR with d-siRNAs caused a 20% reduction of the integrated transferrin receptor fluorescence. Targeting AKT1 and PDK1 had smaller inhibitory effects, whereas targeting TSC2 or PTEN led to an increase in the integrated transferrin receptor fluorescence intensity (Figure 4c, and Figure S5b in Additional data file 1). " ?g. }
Showing items 1 to 4 of
4
with 100 items per page.
- _4 value " Targeting mTOR with d-siRNAs caused a 20% reduction of the integrated transferrin receptor fluorescence. Targeting AKT1 and PDK1 had smaller inhibitory effects, whereas targeting TSC2 or PTEN led to an increase in the integrated transferrin receptor fluorescence intensity (Figure 4c, and Figure S5b in Additional data file 1). " provenance.
- _4 value " Targeting mTOR with d-siRNAs caused a 20% reduction of the integrated transferrin receptor fluorescence. Targeting AKT1 and PDK1 had smaller inhibitory effects, whereas targeting TSC2 or PTEN led to an increase in the integrated transferrin receptor fluorescence intensity (Figure 4c, and Figure S5b in Additional data file 1). " provenance.
- _4 value " Targeting mTOR with d-siRNAs caused a 20% reduction of the integrated transferrin receptor fluorescence. Targeting AKT1 and PDK1 had smaller inhibitory effects, whereas targeting TSC2 or PTEN led to an increase in the integrated transferrin receptor fluorescence intensity (Figure 4c, and Figure S5b in Additional data file 1). " provenance.
- _4 value " Targeting mTOR with d-siRNAs caused a 20% reduction of the integrated transferrin receptor fluorescence. Targeting AKT1 and PDK1 had smaller inhibitory effects, whereas targeting TSC2 or PTEN led to an increase in the integrated transferrin receptor fluorescence intensity (Figure 4c, and Figure S5b in Additional data file 1). " provenance.