Matches in Nanopublications for { <http://www.tkuhn.ch/bel2nanopub/RAeK8Ri9K5Gq42pqczAzagjOKiu7eVy5uZJpLnNsLzUCY#_3> ?p ?o ?g. }
Showing items 1 to 2 of
2
with 100 items per page.
- _3 value "In breast cancers, estrogen receptor (ER) levels are highly correlated with response to endocrine therapies. We sought to define mechanisms of estrogen (E) signaling in a solid breast tumor model using gene expression profiling. ER(+) T47D-Y human breast cancer cells were grown as xenografts in ovariectomized nude mice under four conditions: 1) 17beta-estradiol for 8 wk (E); 2) without E for 8 wk (control); 3) E for 7 wk followed by 1 wk of E withdrawal (Ewd); or 4) E for 8 wk plus tamoxifen for the last week. E-regulated genes were defined as those that differed significantly between control and E and/or between E and Ewd or control and Ewd. These protocols generated 188 in vivo E-regulated genes that showed two major patterns of regulation. Approximately 46% returned to basal states after Ewd (class I genes); 53% did not (class II genes). In addition, more than 70% of class II-regulated genes also failed to reverse in response to tamoxifen. These genes may be interesting for the study of hormone-resistance issues. A subset of in vivo E-regulated genes appears on lists of clinical ER discriminator genes. These may be useful therapeutic targets or markers of E activity. Comparison of in vivo E-regulated genes with those regulated in identical cells in vitro after 6 and 24 h of E treatment demonstrate only 11% overlap. This indicates the extent to which gene expression profiles are uniquely dependent on hormone-treatment times and the cellular microenvironment." provenance.
- _3 wasQuotedFrom 16239301 provenance.